Rational functions

Let
$$\varphi \neq V \subseteq A^n$$
 be a variety (i.e. irreducible)
 $\Gamma(V)$ is an integral domain \Rightarrow we have the following def:

Def: The field of rational functions on V, denoted k(v), is The field of fractions of $\Gamma(v)$. $f \in k(v)$ is a rational function on V.

Ex: In
$$V(xy-z^2) \subseteq A^3$$
, $\frac{x}{z}$ is the same rational function as $\frac{z}{y}$.

Det: A rational function
$$f \in k(V)$$
 is defined or regular at $P \in V$
if $\exists g, h \in \Gamma(V)$ s.t. $f = \frac{g}{h}$ and $h(P) \neq 0$.

In the previous example, $f = \frac{x}{2} = \frac{z}{y}$ is defined at (x, y, z) if $z \neq 0$ or $y \neq 0$.

Poles of rational functions

Def: Let
$$f \in k(V)$$
, $P \in V$. P is a pole of f if f is not defined
at f . (i.e. every possible denominator vanishes at P).

Ex: 1.) If
$$\Gamma(V)$$
 is a UFD, then up to multiplication by units,
 $f \in k(V)$ can be written uniquely as $f = \frac{a}{b}$, where
a, b rel. prime, so the pole set of f is $V(b)$.

2.) In the
$$V(xy-z^2)$$
 example, the pole set of $\frac{x}{z} = \frac{z}{y}$ is $V(\overline{z},\overline{y}) \subseteq V(xy-z^2)$.

Prop: The set of poles of a rational function is an algebraic subset of V.

Pf: Suppose
$$V \in A^n$$
. Let $f \in k(V)$. Let $J_f = \{g \in \Gamma(V) | gf \in \Gamma(V)\}$
Easy to check: J_f is an ideal.

WTS: $V(J_f) = pole set of f.$

P is not a pole of
$$f \iff \exists a, b \in \Gamma(V) \text{ s.t. } \frac{a}{b} = f, b(P) \neq 0$$

$$\iff \exists b \in J_f \text{ s.t. } b(P) \neq 0.$$
$$\iff P \notin V(J_f). \square$$

Local rings at points

<u>Def</u>: Let $P \in V$. $\mathcal{O}_{p}(V) \subseteq k(V)$ is the set of rational functions on V that are defined at P, called the <u>local ring</u> of V at P.

Caution: $\mathcal{O}_{P}(v) \notin k(P)$.

 $Ex: P = V(x) \in A'$

$$\Gamma(P) = \frac{k[x]}{(x)} \cong k \quad \text{so} \quad k(P) \cong k.$$
However, $\stackrel{\times}{T} \in \mathcal{O}_{p}(A^{1})$, but $\stackrel{\cdot}{T} \notin \mathcal{O}_{p}(A^{2})$, so $\mathcal{O}_{p}(A^{1})$ is not a field.
Although x evaluated at P is D, $x \neq 0$ in $\mathcal{O}_{p}(A^{1})$.
More generally, \mathcal{O}_{p} depends on V, whereas $k(P) = \Gamma(P) \cong k$, always.
Claim: $\mathcal{O}_{p}(V)$ is a subring of $k(V)$.
Pf: $\frac{a}{b}, \frac{c}{d} \in \mathcal{O}_{p}(V)$ s.t. $b(P), d(P) \neq 0$. Thus $b(P)d(P) \neq 0$,
so products and differences are in $\mathcal{O}_{p}(V)$.
So $k \in \Gamma(V) \in \mathcal{O}_{p}(V) \subseteq k(V)$ D
 $f \mapsto \frac{f_{1}}{b}$

Prop:
$$\Gamma(V) = \bigcap_{p \in V} \mathcal{O}_{p}(V)$$
, for V a variety. (i.e. $\Gamma(V)$ is exactly the valid functions defined at every point of V)
Pf: We know \subseteq . If $f \in \bigcap_{p \in V} \mathcal{O}_{p}(V)$, then f has no poles,
so if $J_{f} = \{g \in \Gamma(V) \mid gf \in \Gamma(V)\}, V(J_{f}) = \emptyset$.
 $\Rightarrow I \in J_{f}$ (Weak Nullstellensatz) $\Rightarrow f \in \Gamma(V)$. \Box
If $f \in \mathcal{O}_{p}(V)$, we can evaluate at P :

$$\begin{aligned} \text{lf} \quad & f = \frac{a}{b} = \frac{a'}{b'} \implies a(P)b'(P) = a'(P)b(P) \implies \frac{a(P)}{b(P)} = \frac{a'(P)}{b'(P)}, \\ & \uparrow \\ & \text{honzero on } P \end{aligned}$$

i.e. evaluation of f is well-defined.

Evaluation gives us a homomorphism:

$$\mathcal{O}_{\mathsf{P}}(\mathsf{V}) \longrightarrow \mathsf{k}$$
$$f \longrightarrow f(\mathsf{P})$$

Since $k \in O_p(v)$ maps to itself, this map is surjective.

The kurnel is thus max'l, called the maximal ideal of V at P,
defined mp (V) =
$$\{ \text{non-units of } \mathcal{O}_{p}(V) \} = \left(\begin{array}{c} \mathcal{A} \\ \mathcal{A} \\ \end{array} \right) g \in I_{v}(P) \right)$$

<u>Def/Lemma</u>: A ring R is a <u>local ring</u> if it satisfies the following equivalent conditions:

1.) The set of non-units in R is an ideal.

2.) R has a unique maximal ideal m.

(i.e. Op(V) is, in fact, a local ring)

<u>Pf</u>: 1.) \Rightarrow 2.): let m be the ideal consisting of non-units. If $I \subsetneq R$ is an ideal, it contains no units, so $I \subseteq M$.

2.) \Rightarrow 1.): let m be the unique maximal ideal. Then if

 $a \in R$ is not a unit, $(a) \subsetneq R$, so $(a) \subseteq m$. Thus m contains all non-units, so it is exactly the set of non-units. \Box

Ex: 1.) let
$$R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \text{ odd} \right\}$$
.
R is a ring (check)
ceR is a non-unit $\iff c = \frac{2a}{b}$ where b is odd
 $\iff c \in (2)$

Thus, R is a local ring.

- 2.) $\mathbb{C}[\pi]$ is not a local ring: $\pi + 1$ and π are non-units, but $(\pi + 1) - \pi = 1$, so the non-units don't form an ideal.
- 3.) Let $R = \left\{ \frac{a}{b} \in k(\pi) \mid a, b \in k(\pi) \text{ and } b \text{ has a nonzero constant term} \right\}$ Exer: R is a local ring $w/\max(ideal(\frac{\pi}{i}))$. In fact: $R = O_0(A')$.

Prop: Op(V) is Noetherian.

<u>Pf</u>: Let $I \subseteq O_p(V)$. WTS I is finitely generated. Consider $J = I \cap \Gamma(V)$. J is an ideal of $\Gamma(V)$.

 $\Gamma(V)$ is Noetherian, so $J = (f_1, ..., f_r) \in \Gamma(V)$. Let $f \in I \subseteq O_p(v)$. Then $f \in \frac{a}{b}$, $a, b \in \Gamma(v)$, $b(P) \neq 0$. Thus, $bf = a \in I \cap \Gamma(v) = J$. \implies bf = a, f, + ... + a, f, a; $\in \Gamma(V)$. $\implies f = \left(\frac{a_{i}}{b}\right)f_{i} + \dots + \left(\frac{a_{r}}{b}\right)f_{r} \implies I = \left(f_{1}, \dots, f_{r}\right). \ I$ let $\Psi: V \longrightarrow W$ be a regular map of affine varieties. Consider $\Upsilon^* : \Gamma(W) \longrightarrow \Gamma(V)$ $\int_{k(W)} \int_{k(V)}$ Q: Can we extend 4* to k(W)? If so, there's only one possible map: $\frac{q}{h} \longmapsto \frac{\varphi^*(q)}{\varphi^*(h)}$ But if he ker 4*, this doesn't work! (Note: it does work if 4 is dominant! Do you see why this is true geometrically?) Instead, let PEV. Set Q= 4(P). Let $h \in \Gamma(W)$ s.t. $h(Q) \neq 0$.

Then
$$V \rightarrow W \stackrel{h}{\rightarrow} k$$

 $P \stackrel{h}{\rightarrow} Q \stackrel{h}{\rightarrow} h(Q) \neq 0$
 $Y^{*}(h)$
Thus, if $\stackrel{q}{\rightarrow}$ is defined at Q and $h(Q) \neq 0$,
then $\frac{\varphi^{*}(g)}{\varphi^{*}(h)}$ is defined at P.
In fact, this gives us a well-defined (check!) map, so
 Y^{*} induces a morphism
 $\mathcal{O}_{Q}(W) \rightarrow \mathcal{O}_{P}(V)$.
Furthermore, if $\stackrel{q}{\rightarrow} \in m_{Q}(W)$, then $g(Q) = 0$,
so $Y^{*}(g)(P) = g(Y(P)) = g(Q) = 0$

so $\Psi^*(\frac{9}{n}) \in M_p(V)$. That is, $M_{Q}(W)$ gets mapped into $M_p(V)$.